

BIOADAPTOR RCT Outcomes at 3-Year Follow Up

Randomized Controlled Trial of Sirolimus-Eluting Bioadaptor Versus

Zotarolimus-Eluting Drug-Eluting Stent

Shigeru Saito, MD

On behalf of Stefan Verheye, MD, PhD; Holger M Nef, MD, PhD; Mark Webster, MD, and the BIOADAPTOR RCT investigators

Potential conflicts of interest

Speaker's name: Shigeru Saito

☑ I have the following potential conflicts of interest to report

Receipt of honoraria or consultation fees –Elixir Medical, Medinol

Study Organization

Japan:

Shigeru Saito (PI) Shonan Kamakura General Hospital

Akihiko Takahashi Takahashi Hospital
Atsuo Namiki Kanto Rosai Hospital
Tsunekazu Kakuta Tsuchiura Kyodo Hospital

Seiji Yamazaki Sapporo Higashi Tokushukai Hospital Yoshisato Shibata Miyazaki Medical Association Hospital

Jyunji Yajima Cardiovascular Institute

Yoshiaki Ito Yokohama City Eastern Hospital

Tomohiro Kawasaki Shinkoga Hospital

Kenji Ando Kokura Memorial Hospital
Toshiyuki Matsumura Kumamoto Rousai Hospital
Takashi Kajiya Tenyokai Central Hospital
Ken Kozuma Teikyo University Hospital
Takuo Nakagami Oumi Hachiman City GMC

Clinical Research Organization Partners:

Europe:

Stefan Verheye AZ Middelheim Hospital

Johan Bennett Universitäire Zeikenhuizen Leuven Holger Nef Universitätsklinikum Giessen Mathias Vrolix Ziekenhuis Oost-Limburg

Helge Möllmann St. Johannes Hospital Dortmund

Nikos Werner Krankenhaus der Barmherzigen Brüder Trier

Martin Landt Segeberger Kliniken Bad Segeberg

Jürgen Bogoviku Universitätsklinikum Jena

Ian Buysschaert AZ Sint Jan Brugge Oostende AV

Tommaso Gori Universitätsmedizin Mainz

Christoph Liebetrau CCB Frankfurt

Maren Weferling Kerckhoff Klinik Bad Nauheim Stephan Achenbach Universitätsklinikum Erlangen

Matthias Lutz UKSH Kiel

New Zealand:

Mark Webster Auckland Seif El-Jack North Sho

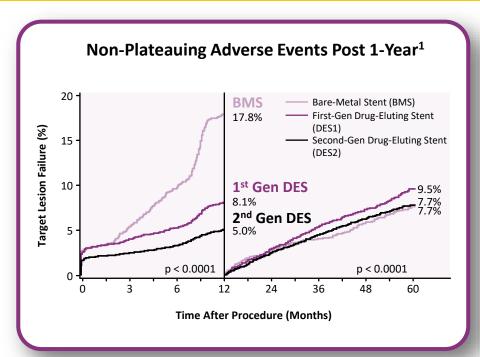
Dougal McClean Gerard Wilkins Madhay Menon

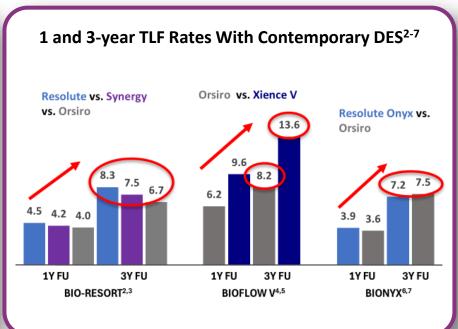
Douglas Scott

Auckland City Hospital

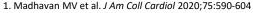
North Shore Hospital Takapuna

Christchurch Hospital Dunedin Hospital


Waikato Hospital


Middlemore Clinical Trials Trust

europcr.com

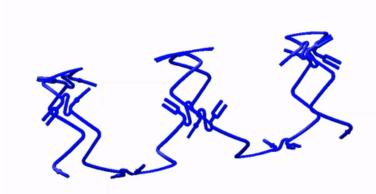


Stent Related Adverse Events Increase 2-3% Each Year After PCI

Increase in adverse events attributed to constraining the vessel and loss of vessel function⁵

2. von Birgelen C et al The Lancet. 2016 Nov 26;388(10060):2607-17.

3. Buiten A et al JACC: Cardiovasc Interv., 2019. Vol. 12, No. 17.


4. Kandzari DE et al. The Lancet. 2017 Oct 21;390(10105):1843-52

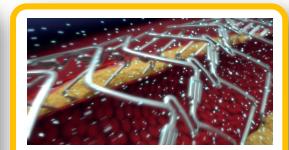
- 5. Kandzari DE, et al. J Am Coll Cardiol Intv. 2020 Jun, 13(11) 1343-1353
- 6. von Birgelen C et al. The Lancet. 2018 Oct 6;392(10154):1235-45.
- 7. Ploumen EH et al. Circ J. 2021 Oct 25; 85(11):1983-1990

Novel Bioadaptor Implant

Bioadaptor is a coronary implant (DynamX[®], Elixir Medical, California) that is **designed to adapt to vessel physiology to restore vessel function** and address device related adverse events^{1,2}.

- Three independent helical sinusoid strands (CoCr 71μm) are temporarily connected by bioresorbable polymer coating eluting antiproliferative agent
- Following polymer resorption after 6 months, the helical strands unlock, separate and provide dynamic support

*The DynamX Sirolimus Eluting Coronary Bioadaptor System is an investigational device. Limited by Federal (or United States) law to investigational use.



Study Device: Bioadaptor Mechanism of Action

Bioadaptor (DynamX°, Elixir Medical, CA) is a novel technology designed to *restore* hemodynamic modulation of the vessel and address device related adverse events.

after 6 months

0 - 6 months

2. Unlocked:
Maintain Flow Lumen

3. Dynamic Support: Restore Hemodynamic Modulation

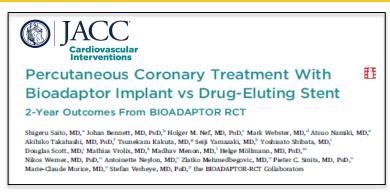
Restore flow and achieve high acute gain and low residual %DS^{1,2}

1. Locked:

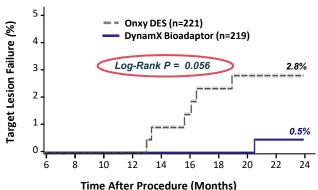
Establish Flow Lumen

Restore adaptive remodeling and maintain low %DS^{1,2}

Restore pulsatility, compliance, adaptive coronary flow¹⁻³

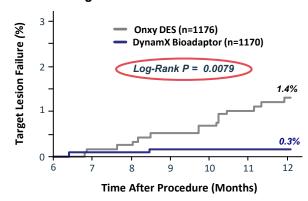


^{1.} Saito S et al. 12-Months Outcomes BIODAPTOR-RCT. The Lancet eClinicalMedicine. 2023;65:102304.


^{2.} Verheye S et al. Twelve-month clinical and imaging outcomes of the uncaging coronary DynamX bioadaptor system, EuroIntervention 2020, 16(12);E974

^{3.} Kwak BR et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. European heart journal. 2014 Nov 14;35(43):3013-20.

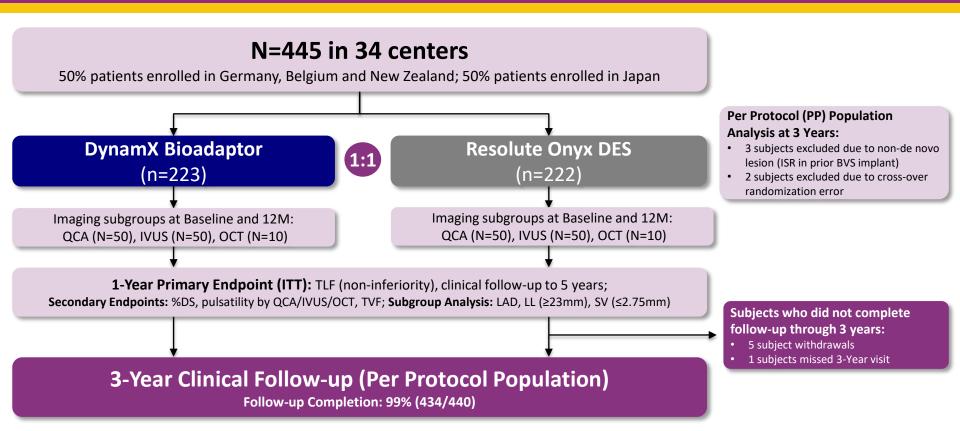
Plateauing of Events After 6 Months in Two RCTs^{1,2}



BIOADAPTOR RCT: Plateauing of TLF after 6-Months to 24 Months¹

Bioadaptor implant versus contemporary drug-eluting stent in percutaneous coronary interventions in Sweden (INFINITY-SWEDEHEART): a single-blind, non-inferiority, registry-based, randomised controlled trial Double Finge, Jones Anderson, Ole Folbert, Matties Tomend, Mehmet Hamid, Thomas Kellerth, Per Grimfjierd, Oscar Wirneberg, Juliane Jurga, Hernelt Wagner, Sammy, Zuecksman, Martin Addelson, Patrix Altstring, Elli Mance, Anders Ulberstam, Jones Milliglard, Felix Biblin, Claus Held, Hernelt Reguland, Claus Globern, Piter C. Smitz, Candese Ells, Andrea Baband, Serfon James

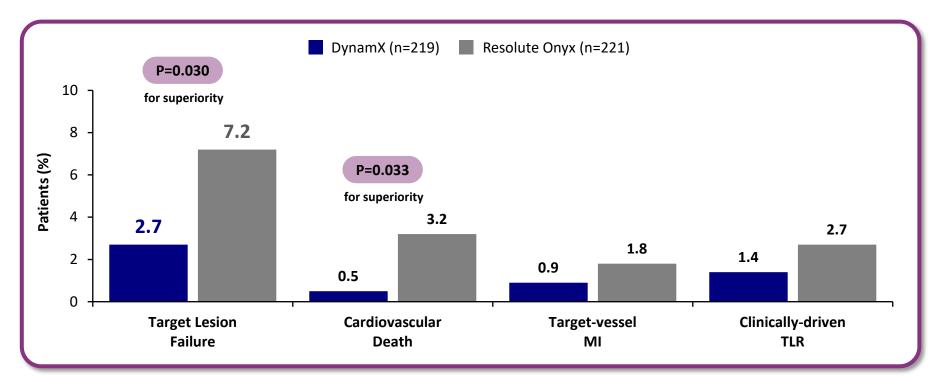
INFINITY-SWEDEHEART RCT: Plateauing of TLF after 6-Months to 12 Months²



1. Saito S et al. 24-month Outcomes BIOADAPTOR-RCT. JACC Interv 2025 Apr 28;18(8):988-97.

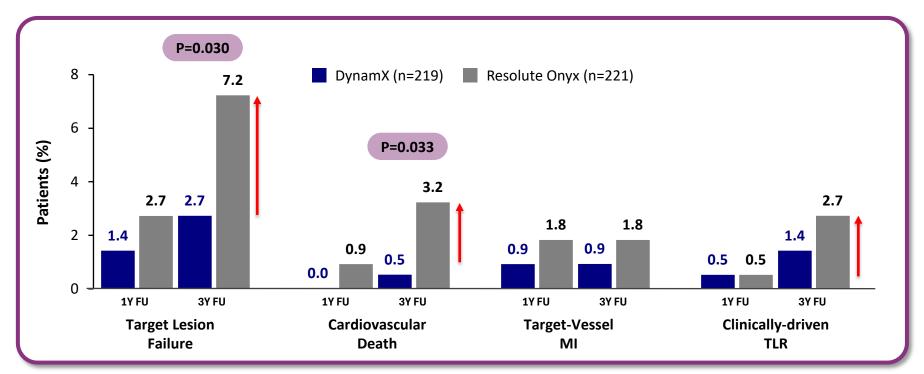
2. Erlinge D et al. 12-Month Outcomes INFINITY-SWEDEHEART-RCT The Lancet. 2024 Nov 2;404(10464):1750-9.

BIOADAPTOR RCT - Trial Design

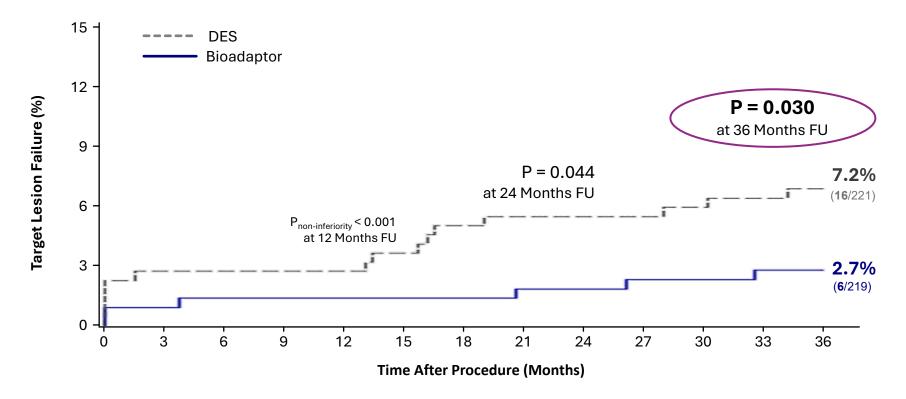

Patient Baseline Characteristics

Baseline Characteristics	DynamX (N=223)	Resolute Onyx (N=222)
Age, years	67.1 ± 10.3	66.2 ± 10.1
Female	49 (22.0%)	49 (22.1%)
Hypertension	161 (73.2%)	156 (70.9%)
Dyslipidemia	178 (80.9%)	177 (80.5%)
Diabetes Mellitus	59 (26.5%)	75 (33.8%)
Prior MI	42 (19.1%)	48 (21.8%)
Prior PCI/CABG	90 (40.9%)	84 (38.2%)
Stable Angina	144 (64.6%)	150 (67.6%)
ACS	79 (35.4%)	72 (32.4%)

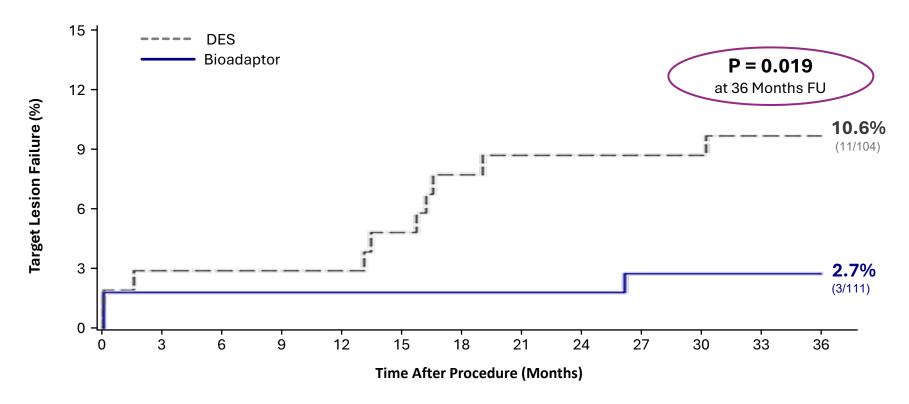
Anatomical Characteristics	DynamX (N=223)	Resolute Onyx (N=222)
Target lesion vessel		
LAD	114 (50.4%)	104 (45.2%)
LCX	35 (15.5%)	66 (28.7%)
RCA	77 (34.1%)	60 (26.1%)
Ostial lesion	13 (5.8%)	8 (3.5%)
Bifurcation lesion	50 (22.1%)	55 (23.9%)
Moderate/severe calcification	43 (19.0%)	47 (20.4%)
Moderate/severe tortuosity	53 (23.5%)	46 (20.0%)
ACC/AHA lesion B2/C	51 (22.6%)	49 (21.3%)
Target lesion length, mm	15.8 ± 6.0	16.2 ± 6.0


Significant Reduction in TLF with Bioadaptor at 3 Year Follow-up Compared to DES

*Chi-square test for p values. Per protocol analysis. Events adjudicated per the ARC-2 Criteria. Percentages indicate patients who had an event through the 1095±100 days follow up window.


Low TLF with Bioadaptor Sustained at 3Y Follow-up, while a Non-plateauing Increase in TLF, CVD and ID-TLR with DES

^{*}Chi-square test for p values. Per protocol analysis. Events adjudicated per the ARC-2 Criteria. Percentages indicate patients who had an event through the 1095±100 days follow up window.



Sustained Treatment Benefit with Bioadaptor From 6 Months to 3 Years

Substantial Treatment Benefit Demonstrated in LAD Lesions at 3 Years

Conclusions

- Three-year clinical follow up results from the BIOADAPTOR-RCT shows:
 - Sustained significantly lower TLF rates (2.7% versus 7.2%, p=0.030) with bioadaptor compared to DES
 - Significantly lower rate of Cardiac Death (0.5% versus 3.2%, p=0.033) compared to DES, and lower rate of clinically driven revascularizations
 - Substantial clinical benefit with bioadaptor in LAD lesions (TLF: 2.7% versus 10.6%, p=0.019), consistent with bioadaptor mechanism of action of restoring vessel function
- Evidence from the BIOADAPTOR-RCT demonstrate sustained significant reduction of device-related events with bioadaptor compared to DES, confirming the durability of treatment benefit from 6 months and through long-term follow-up

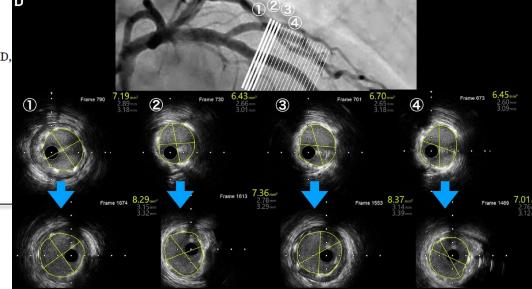
pcronline.com

Supplemental Material

30 Months Imaging Follow up From BIOADAPTOR-RCT

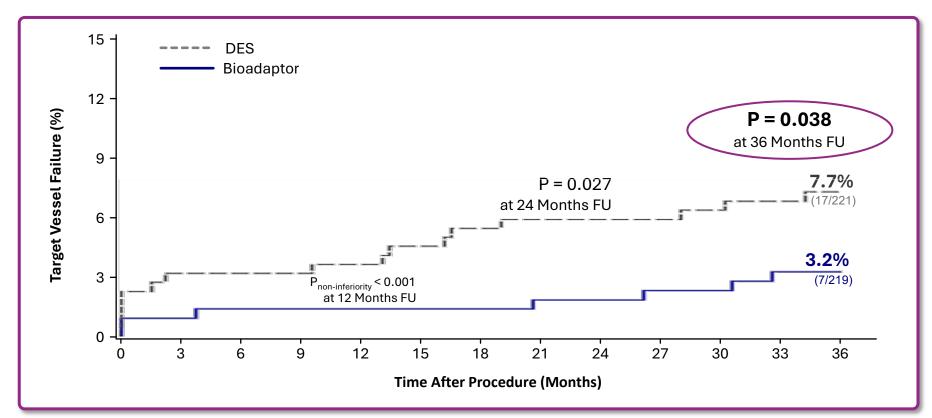
CORONARY, PERIPHERAL, AND STRUCTURAL INTERVENTIONS

CLINICAL CASE SERIES


Physiological Scaffold Remodeling in the Coronary Artery After 30 Months of

Bioadaptor Implantation

Shiori Kawakami, MD,^a Akihiko Takahashi, MD,^{a,b} Norimasa Taniguchi, MD, Tetsuya Hata, MD,^a Shunsuke Nakajima, MD,^a Shigeru Saito, MD^c


JACC: CASE REPORTS

© 2025 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN
COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER
THE CC BY LICENSE (http://creativecommons.org/licenses/by/4.0/).

Sustained Plateau in TVF at 3-Year Follow up

